Forecasting Walmart Sales with Machine Learning

MGMT59000 Machine Learning

Seonkyu Kim Yu-Hui Lin

Table of contents

Project Intro

Background description and project goal

Data Preparation

Data preprocessing and feature engineering

Data Analysis

Model building, selection, and comparison

Project Intro

Background description and project goal

Background

Project Goal

Apply machine learning practice to help Walmart better forecast future product sales

Scope

Future 28-day daily product sales of 10 stores in California, Texas, and Wisconsin

Datasets

- **10** stores across California, Texas, and Wisconsin
- **5yr** sales & price time series data (Jan., 2011 Jun., 2016)

Data Preparation

Data preprocessing and feature engineering

Supervised Machine Learning

Features

- 5-year historical prices and sales
- Events and context of products

Predicted Sales

- Forcasting horizon: 28 days ahead
- Loss function: Mean square error

Feature Processing

Data Analysis

Model building, selection, and comparison

Model Comparison

	Gradient Boosting	Transformer	Ensemble
Structure	 10 Models 1-1913d Training 1914-1941d Validation Iterations=150 Learning rate=0.01 	 10 Models 1885-1913d Training 1914-1941d Validation Attention heads=12 Dropout=0.2 	Two models combined
MSE (validation)	6.23-9.38	0.47-3.92	-
Private Score*	2.5986	0.90539	MAX: 1.42651 AVG: 1.5558 MIN: 3.11345
	* Private score is based or submission of "0" default v	ו the submission score on Kaggle. value for all products scores 5.390	A sample

Another Approach

Another Approach (Result)

DNN Private Score = 1.5520 **1D_CNN** Private Score = 1.0079

LSTM Private Score = 0.6860

Transformer

Private Score = 3.6327

Performance Evaluation

Model prediction results

Forecasted Sales

Conclusion

Thanks!

Do you have any questions?

