Machine Learning Model for Stock Price Prediction

2020. 03. 19.

Seonkyu Kim, Gimok Kim, Sol-yi Park, Sangjeong Lee, Wonjin Joo

Content

Research Purpose
Methods
Related Indicators
Stock Price Prediction
Results

Researh Purpose

• To predict the current market price based on past data in the stock market.

• To utilize machine learning for actual stock investment through more objective analysis.

Methods

- ① Stock Data Collection
- ② Prediction Model Building
- ③ Model Comparison and Evaluation

Ι	
Time	2010.01.04~2018.12.28
Training Data	2010.01.04~2017.03.06
Test Data	2017.03.07~2018.12.28

Related Indicators

Reference: Zhou, Xingyu, et al. "Stock market prediction on high-frequency data using generative adversarial nets." *Mathematical Problems in Engineering* 2018 (2018).

Related Indicators

- **Bollinger Bands** (HBB(High), MBB(Middle), LBB(Low)):
 - An indicator that shows where the stock price is based on the 20-day moving average line.
- DMI: Directional Movement Index,

(PDI(+DI: Stock Price Increase), MDI(-DI: Stock Price Decrease), ADX)

- Indicator Moving Average
- Stochastic Index(KDJ_K, KDJ_D, KDJ_J)
 - %K : An indicator that shows where today's closing price is located within the 12-day high and low price range.
 - %D(Slow %K): 5-day moving average of %K
 - Slow %D: 5-day moving average of %D
- **MACD**: Auxiliary indicator that identifies stock price trends through the difference between the short-term and the long-term moving average.
- **RSI**: An indicator that shows the relative strength of upward and downward price pressure.

Stock Price Prediction

| Data |

Training Data 80% Testing Data 20% Classification & Prediction Models

SVM

Logistic Regression

Gradient Boosting

Naïve Bayes

Decision Tree

KNN

LSTM

ARIMA

Stock Price Rise or Fall Prediction

Logistic Regression

Logistic	precision	recall	f1-score	support	
0 [Stock Price Fall]	0.57	0.82	0.67	247	
1 [Stock Price Rise]	0.7	0.4	0.51	255	
accuracy			0.61	502	
macro avg	0.63	0.61	0.59	502	
weighted avg	0.64	0.61	0.59	502	

Confusion Matrix

- macro : average
- weighted : weighted average by the number of samples belonging to each class
- accuracy : the ratio of the number of times

Gradient Boosting

Gradient	precision	recall	f1-score	support	
0 [Stock Price Fall]	0.57	0.77	0.66	247	
1 [Stock Price Rise]	0.67	0.44	0.53	255	
accuracy			0.60	502	
macro avg	0.62	0.61	0.59	502	
weighted avg	0.62	0.60	0.59	502	

Confusion Matrix

- macro : average
- weighted : weighted average by the number of samples belonging to each class
- accuracy : the ratio of the number of times

Support Vector Machine (SVM)

SVC	precision	recall	f1-score	support
0 [Stock Price Fall]	0.59	0.77	0.66	247
1 [Stock Price Rise]	0.68	0.47	0.56	255
accuracy			0.62	502
macro avg	0.63	0.62	0.61	502
weighted avg	0.63	0.62	0.61	502

Confusion Matrix

- macro : average
- weighted : weighted average by the number of samples belonging to each class
- accuracy : the ratio of the number of times

Results of All Models

Stock Price Prediction (LSTM)

Long Short Term Memory (LSTM)

- \checkmark LSTM model is used because the stock price is time series data.
- In general, as the number of hidden layers in a Neural Network increases, the learning ability improves, but the possibility of overfitting increases.

- ✓ Dropout: Regularization technology to reduce overfitting.
- Temporarily excludes a unit from the network and disconnects all excluded units.
- keep_prob: Probability of maintaining a given unit. In other words, the probability of not dropping.

keep_prob Comparison

keep_prob = 1.0, softsign

keep_prob = 0.7, softsign

keep_prob = 0.9, softsign

keep_prob = 0.5, softsign

Activation Function Comparison

keep_prob = 1.0, softsign

keep_prob = 1.0, relu

keep_prob = 1.0, tanh

Activation Function Comparison

keep_prob = 0.7, softsign

keep_prob = 0.7, relu

keep_prob = 0.7, tanh

keep_prob Comparison (Add Variables)

keep_prob = 1.0, softsign

keep_prob = 0.7, softsign

keep_prob = 0.9, softsign

keep_prob = 0.5, softsign

Results

Before adding variables

keep_prob	activation function	rmse	predicted value	real value	
1	softsign	0.009	2787		
1	relu	0.01	2760		
1	tanh	0.008	2799		
0.9	softsign	0.011	2785	2840	
0.7	softsign	0.014	2850	2840	
0.7	relu	0.044	2711		
0.7	tanh	0.0151	2769		
0.5	softsign	0.0199	2827		

After adding variables

keep_prob	activation function	rmse	predicted value	real value
1	softsign	0.014	2803	
1	relu	0.013	2821	
1	tanh	0.014	2817	
0.9	softsign	0.0163	2826	2840
0.7	softsign	0.0174	2825	2840
0.7	relu	0.04	2706	
0.7	tanh	0.027	2866	
0.5	softsign	0.022	2893	

Stock Price Prediction (ARIMA)

ARIMA

Prediction based only on closing price

- **AR** : AutoRegression, a model in which the error term of previous observations affects subsequent observations
- I : Intgrated, expression given to time series models that use differences
- **MA** : Moving Average, a model in which observations are influenced by previous continuous error terms

	Date	Adj Close
0	2017-12-01	3230.0
1	2017-12-04	3185.0
2	2017-12-05	3230.0
3	2017-12-06	3205.0
4	2017-12-07	3130.0
5	2017-12-08	3080.0
6	2017-12-11	3095.0
7	2017-12-12	3095.0
8	2017-12-13	3090.0
9	2017-12-14	3095.0
10	2017-12-15	3080.0
11	2017-12-18	3055.0
12	2017-12-19	3030.0
13	2017-12-21	2960.0
14	2017-12-22	2960.0

ARIMA_RMSE

10.01.01. ~ 18.01.31. \rightarrow 2760 16.01.01. ~ 18.01.31. \rightarrow 423 17.01.01. ~ 18.01.31. \rightarrow 340

17.12.01. ~ 18.01.31. → 142

: As the period decreases, RMSE gets smaller.

RMSE: 2760.5535

RMSE: 423.1814

RMSE: 142.5147

ARIMA_RMSE

→ 20171201 ~ 20180131 기
 간의 종가(Close)를 학습시킴

In [39]: # ARIMA(3,1,2)

AR.1

AR.2

AR.3

MA.1 MA.2 0.4991

0.4991

4.7009

0.4394

0.4394

model = ARIMA(series, order = (3,1,2))
model_fit = model.fit(trend='nc', full_output = True, disp = 1)
print(model_fit.summary())

-1.2743j

+1.2743j

-0.0000j

-0.8983j

+0.8983j

	ARIMA Moo	del Result	s					
Dop Variable:			Observat	ione:				
Dep. Variable:	D.Adj Ci	ose No.	Observat	ions.	30			
Model:	RIMA(3, 1,	2) Log L	Ikelihood	1 .	-201.288			
Method:	css-ml	e S.D. of	f innovati	ons	45.934			
Date: The	u, 19 Mar 20	020 AIC		41	4.577			
Time:	02:17:26	BIC		424.4	02			
Sample:	1 1	HQIC		418.072	2			
coe	f std err	z	P> z	[0.025	0.9751			
ar.L1.D.Adj Close	0.7457	0.279	2.6 <mark>75</mark>	0.012	0,199	1,292		
ar.L2.D.Adj Close	-0.6473	0.243	-2. <mark>66</mark> 6	0.012	-1.123	-0.171		
ar.L3.D.Adj Close	0.1136	0.231	0.491	0.627	- <mark>0</mark> ,340	0.567		
ma.L1.D.Adj Close	-0.8788	0.538	-1 <mark>.6</mark> 35	0.112	-1.932	0.175		
ma.L2.D.Adj Close	1.0000	1.055	0. <mark>94</mark> 8	0.350	-1.067	3.067		
	Roots							
			========					
Real	Imagina	iry	Modulus	Frequ	ency			
							-	

1.3686

1.3686

4.7009

1.0000

1.0000

-0.1906

0,1906

-0.0000

-0.1776

0.1776

ARIMA_Results

(Reference : NAVER Finance)