Artificial Intelligence Model for the Prediction of Cardiac Arrests Using Time-Series Biometric Data

Jeongjun Heoh · Seonkyu Kim · Seong-gyu Woo

2020.7.3

Project Background

Project Background

Project Outline

- Develop a python-based artificial intelligence model for predicting the risk points of critically ill patients.
- Integrate machine learning and deep learning algorithms into statistics to learn and apply changes in patterns, detecting patient risk.
- The purpose is to detect subtle abnormalities in biometrics data of critically ill patients so that medical staff can quickly correct the causative disease.
- Expected to secure survival rates and improve the quality of medical services by appropriate deployment of medical staff.

Project Background

Dataset

AI

- Sex, Age
- Vital Sign :
 - Systolic blood pressure, Body temperature, Pulse, Respiration, Oxygen saturation
- Blood Data :
 - WBC, Platelets, Hemoglobin, Creatinine, Glucose, Sodium
 - Potassium, Chlorine, Protein, Albumin, Bilirubin, Calcium, Lactic acid
 - CRP, ALP, AST, ALT, BUN

Methods

Methods

Timeline

May	May	May	Jun	Jun	Jun	Jun	July
2nd Week	3rd Week	4th Week	1st Week	2nd Week	3rd Week	4th Week	1st Week

Outline, Literature Review

Develop

Plan

AI ZEN

Preprocessing, Model Selection, Integrating Feedback, Model Development

Modify

Refinement and Correction

Problem Definition

Existing System : Early Warning Score (EWS)

- A scoring system based on multiple vital signs to quickly determine the level of diseases of the patient
- Low Recall / High False Alarm Rate

※ Recall : Probability of judging a dangerous case as dangerous
 False Alarm Rate : Probability of judging a non-dangerous case as dangerous (=False Positive Rate)

• Increased burden among medical staff

Score	3	2	1	0	1	2	3
Respiratory rate		<9			9-14	15-20	
O ₂ Saturation	<90						
Body temp.		<35.1	35.1-36.5	36.5-37.5	<37.5		
Blood pressure	<70	70-80	81-100	101-200			
Pulse		<40	40-50	51-100	101-110	111-130	>130
AVPU				А	V	Р	U

<Modified Early Warning Score (MEWS)>

<Kwon JM, Lee Y, Lee Y, Lee S, Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J Am Heart Assoc 2018;7>

Methods

Problem Redefinition

Statistical Analysis

- 1) Basic stats
- 2) Regression to identify the relationship among variables
- 3) Extracting meaningful features

Goal
1) Future risk detection
2) Weighted type 1 & 2 errors
3) High Recall / Low False Alarm Rate

Methods

Data Structure

- Data in the train set and the test set are patient data from different hospitals.
- Since the data per patient is relatively short, approximately 2 to 5 days, it is appropriate to analyze data in hours rather than days.

	Train (Hospital A)	Test (Hospital B)
Time	2017.01. ~ 2019.03.	2019.01. ~ 2019.05.
Number of Patients (Data size)	4,816 (161,710)	2,588 (103,565)
Proportion of Risk Group Patient	7.2%	2.4%
Measurement Period		
2 Days	3(91)	0(0)
3 Days	36(1527)	7(341)
4 Days	306(21266)	54(3653)
5 Days	4471(138826)	2527(99571)
Sex Ratio (M:F)	65.1% : 34.9%	56.7% : 43.3%
Age	65.7±12.8	67.6±16.0
Min	2.2	16.2
Max	102.7	98.7

Methods

Exploratory Data Analysis (Chart)

cardiac arrest occurs

6 hours before cardiac arrest

• This is a case in which a 'significant increase in pulse to over 130' appears to be closely related to the occurrence of cardiac arrest.

Missing Values

- The main reasons for missing values are problems with EMR recording devices and differences in rounding methods on general wards.
- Body temperature, pulse, and respiration are often measured simultaneously, and oxygen saturation is often measured using a separate device.
- Rather than replacing or removing missing values, we want to convert them into dummy variables and utilize them.

	d	d * X	$\Delta \mathbf{d} * \mathbf{X}$	Δ t1	$\Delta t2$
Meaning	Dummy Variable	d * (Measured Value)	Difference between previous (d * X) values	(Current Time) – (Previous Existing Value Time)	(Current Time) — (Previous Data Time)
Value	Missing Value →0 Existing Value→1	Missing Value →0 Existing Value→X		$t_i - t_{i-n}$	$t_i - t_{i-1}$

Methods

Missing Value Conversion Example

						Х		
20180120	1730	Sex	Age	[†] BP	BT	Pul	Res	SaO2
20180120	1745	М	58.9	115	36.7	64	30	#N/A
20180120	1800	М	58.9	116	36.6	64	20	97
20180120	1900	М	58.9	#N/A	#N/A	#N/A	#N/A	98
20180120	2000	М	58.9	#N/A	#N/A	#N/A	#N/A	95
20180120	2100	М	58.9	#N/A	#N/A	#N/A	#N/A	95
20180120	2200	М	58.9	#N/A	#N/A	#N/A	#N/A	92
20180120	2215	М	58.9	122	36.6	62	30	#N/A
20180120	2230	М	58.9	125	36.7	62	28	#N/A
20180120	2300	М	58.9	#N/A	#N/A	#N/A	#N/A	97

← Before

 \downarrow After

				d					d*X					∆d*X					Δt1			Δt2
Sex	Age	BP	BT	Pul	Res	SaO2	BP	BT	Pul	Res	SaO2	BP	BT	Pul	Res	SaO2	BP	BT	Pul	Res	SaO2	Time
1	58.9	1	1	1	1	0	115	36.7	64	30	0	0	0	0	0	0	0	0	0	0	0	0
1	58.9	1	1	1	1	1	116	36.6	64	20	97	1	-0.1	0	-10	0	0.25	0.25	0.25	0.25	0	0.25
1	58.9	0	0	0	C) 1	0	0	0	0	98	0	0	0	0	1	0	0	0	0	1	1
1	58.9	0	0	0	C) 1	0	0	0	0	95	0	0	0	0	-3	0	0	0	0	1	1
1	58.9	0	0	0	C) 1	0	0	0	0	95	0	0	0	0	0	0	0	0	0	1	1
1	58.9	0	0	0	C) 1	0	0	0	0	92	0	0	0	0	-3	0	0	0	0	1	1
1	58.9	1				0	122	36.6	62	30	0	6	0		10	0	4.25	4.25	4.25	4.25	0	0.25
1	58.9	1	1	1	1	0	125	36.7	62	28	0	3	0.1	0	-2	0	0.25	0.25	0.25	0.25	0	0.25
1	58.9	0	0	0	C) 1	0	0	0	0	97	0	0	0	0	5	0	0	0	0	1	0.5

Regression

- The newly created variables show some valid values
- For example, pulse shows a significant relationship with the occurrence of cardiac arrest.

	coef	std err	t	P> t [0.025	0.975]
Sex	0.0011	0.001	2.174	0.030 0.000	0.002
Age	0.0006	0.001	0.495	0.620 -0.002	0.003
Blood Pressure_exist	-0.0057	0.002	-3.057	0.002 -0.009	-0.002
Body Temp_exist	0.0007	0.002	0.409	0.682 -0.003	0.004
Pulse_exist	-0.0142	0.003	-4.901	0.000 -0.020	-0.008
Respiration_exist	-0.0320	0.003	-10.681	0.000 -0.038	-0.026
SaO2_exist	0.0647	0.004	16.909	0.000 0.057	0.072
Blood Pressure	0.0071	0.003	2.798	0.005 0.002	0.012
Body Temp	-0.0012	0.004	-0.292	0.770 -0.010	0.007
Pulse	0.0476	0.003	14.133	0.000 0.041	0.054
Respiration	0.0860	0.004	20.954	0.000 0.078	0.094
SaO2	-0.0731	0.004	-17.618	0.000 -0.081	-0.065
Blood Pressure_change	3.728e-05	0.001	0.032	0.974 -0.002	0.002
Body Temp_change	-0.0039	0.002	-2.176	0.030 -0.007	-0.000
Pulse_change	-0.0054	0.002	-2.933	0.003 -0.009	-0.002
Respiration_change	0.0069	0.001	5.817	0.000 0.005	0.009
SaO2_change	0.0055	0.002	3.514	0.000 0.002	0.009
TimeD_Blood Pressure	0.0384	0.010	3.690	0.000 0.018	0.059
TimeD_Body Temp	0.0554	0.014	3.922	0.000 0.028	0.083
TimeD_Pulse	-0.0761	0.025	-3.028	0.002 -0.125	-0.027
TimeD_Respiration	0.0372	0.023	1.618	0.106 -0.008	0.082
TimeD_SaO2	-0.0248	0.002	-14.330	0.000 -0.028	-0.021
TimeDelta	-0.0602	0.004	-14.161	0.000 -0.068	-0.052

There is a trade-off in how many hours (h) we need to predict.

- Predictions for the near future ightarrow Performance \uparrow , Practicality \downarrow
- Predictions for the distant future $\ o$ Practicality $\ \uparrow$, Performance \downarrow
- Therefore, it is necessary to set the goal of how many hours (h) later to predict risk.

• To predict the future after *h* hours, *m* previous data is needed. At this time, *m* is searched as a parameter.

Model Suggestion

• Two models are proposed depending on the purpose.

Predictive Model in 6 hours	• On average, doctors predict risk situations six hours in advance. Therefore, comparing with the current standard could be a good standard.
Predictive Model in 1 hour	• The short-term prediction will reduce the waiting time of emergency medical staff. The model can clearly show the difference between long-term and short-term forecasts.

• We can expect long-term and short-term forecasting effects, respectively.

Input Method Example

Model Selection

- CNN
 - CNN was designed to accommodate data as a time series using 1D convolution.
- LSTM
 - LSTM is ideal for entering the patient's past eight consecutive data because it recognizes time series data well.
- DNN
 - DNN was included in the comparison as a basic deep-learning model, providing a benchmark for the other models' performance.
- LGBM
 - We constructed models using machine learning techniques and compared their performance.

Number of Cases

Predictive Model in 6 hours

DNN

0.685

0.796

0.852

Confusion Matrix of Predictive Model in 6 hours

- LSTM performs best among predictive models in 6 hours
- Type 2 error decrease : Type 1 error increase

 (1) 23 : 4012 ≒ 1 : 174
 (2) 6 : 4629 ≒ 1 : 771

Confusion Matrix of Predictive Model in 1 hour

- LGBM performs best among predictive models in 1 hour
- Type 2 error decrease : Type 1 error increase

 (1) 28 : 4293 ≒ 1 : 153
 (2) 15 : 4176 ≒ 1 : 278

Comparison with Existing System

	LSTM	DEWS	MEWS		LGBM	DEWS	MEWS
Recall				Recall			
FPR = 0.05	0.740	0.493	-	FPR = 0.05	0.735	0.493	-
FPR = 0.10	0.807	0.607	0.373	FPR = 0.10	0.813	0.607	0.373
FPR = 0.15	0.825	0.630	0.493	FPR = 0.15	0.855	0.630	0.493
AUROC	0.912	0.837	0.765	AUROC	0.937	0.837	0.765
AUPRC	0.158	0.239	0.028	AUPRC	0.144	0.239	0.028

Predictive Model in 6 hours

Predictive Model in 1 hour

Real-Time Risk Prediction Chart

Implication

Implication

- Limitation
 - Lack of data on risk group
 - Approach by grouping variables by measurement period
 - Explanatory power
- Implication

- Rather than viewing data as simple numbers and processing it mechanically, we learned the need for a statistical approach based on a sufficient understanding of the data.

Thank you

Reference

A

ZEN

• An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest <Kwon JM, Lee Y, Lee Y, Lee S, Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J Am Heart Assoc 2018;7>

- A deep learning model for real-time mortality prediction in critically ill children <Kim SY, Kim S, Cho J, et al. A deep learning model for real-time mortalityprediction in critically ill children. Crit Care. 2019;23:279>
- Recurrent Neural Networks for Multivariate Time Series with Missing Values <Che, Z. et al. Recurrent neural networks for multivariate time series with missing values. Rep. 8, 1–12 (2018)>
- Learning representations for the early detection of sepsis with deep neural networks

<Kam, H. J. & Kim, H. Y. Learning representations for the early detection of sepsis with deep neural networks. Computers in biology and medicine 89, 248–255 (2017)>

Distribution of Risk Group and Control Group by Train and Test Dataset

	Train, Hospital A				
	Risk Group	Control Group			
Time	2017.01~2019.02	2017.03~2019.03			
Patient Number (Data Size)	345(22884)	4471(138826)			
Measuring Period					
2 days	3(91)	-			
3 days	36(1527)	-			
4 days	306(21266)	-			
5 days	-	4471(138826)			
Sex Ratio (M:F)	62.6% : 37.4%	65.3% : 34.7%			
Age	63.7±15.9	71.4±10.9			
Min	2.2	40.8			
Max	102.7	87.2			

	Test, Ho	ospital B			
	Risk Group	Control Group			
Гime	2019.03 ~ 2019.05	2019.01~2019.05			
Patient Number Data Size)	61(3994)	2527(99571)			
Measuring Period					
2 days	0(0)	-			
3 days	7(341)	-			
4 days	54(3653)	-			
5 days	-	2527(99571)			
Sex Ratio (M:F)	50.8% : 49.2%	56.8% : 43.2%			
Age	70.2±14.9	67.5±16.1			
Min	23	16.2			
Мах	95	98.7			

Data Details

Patient Data			
Patient_ID	Hospitalization date	Hospitalization days	Measurement time
Sex	4 days after hospitalization	Original data number	Body temperature
Birthdate	Prescription date	Measurement date	Pulse
Age	4 days before prescription	Systolic blood pressure	Respiration
Deathdate	Discharge date	Diastolic blood pressure	Sa02
Event Data			
Event_ID	Deathdate (R)	Encounter date	Detection_date
Sex	Deathdate	Event_date	Detection_time
Birthdate	Age	Event_time	
Blood Data			
WBC count	platelet	Hgb	BUN
Creatinin	Glucose	Sodium	Potassium
Chloride	Total protein	Total bilirubin	Albumin
CRP	Total calcium	Lactate	Alkaline phosphatase
AST	ALT		

Vital Sign Distribution

Proportion of Missing Values

	Blood Pressure	Body Temperature	Pulse	Respiration	SaO2
Risk Group	54.7%	52.0%	54.5%	55.5%	23.1%
Control Group	21.1%	17.9%	22.3%	22.8%	53.4%

Missing Value Ratio by Variable

	Blood Pressure	Body Temperature	Pulse	Respiration	SaO2
Risk Group	72.3%	70.9%	72.7%	73.1%	45.0%
Control Group	78.2%	77.1%	78.5%	78.6%	86.7%

Missing Value Ratio with 1-hour equalization

Confusion Matrix of All Models (6 hour prediction)

Confusion Matrix of All Models (1 hour prediction)

