Artificial Intelligence Model for the Prediction of Cardiac Arrests Using Time-Series Biometric Data

Jeongjun Heoh · Seonkyu Kim · Seong-gyu Woo

2020.7.3

Project Background

Project Background

Project Outline

- Develop a python-based artificial intelligence model for predicting the risk points of critically ill patients.
- Integrate machine learning and deep learning algorithms into statistics to learn and apply changes in patterns, detecting patient risk.

- The purpose is to detect subtle abnormalities in biometrics data of critically ill patients so that medical staff can quickly correct the causative disease.
- Expected to secure survival rates and improve the quality of medical services by appropriate deployment of medical staff.

Project Background

Dataset

 $\left|\frac{\mathbf{A}\mathbf{I}}{2EN}\right|$

- Sex, Age
- Vital Sign :
	- Systolic blood pressure, Body temperature, Pulse, Respiration, Oxygen saturation
- Blood Data :
	- WBC, Platelets, Hemoglobin, Creatinine, Glucose, Sodium
	- Potassium, Chlorine, Protein, Albumin, Bilirubin, Calcium, Lactic acid
	- CRP, ALP, AST, ALT, BUN

Methods

Timeline

Outline, Literature Review

Develop

Plan

AI

Preprocessing, Model Selection, Integrating Feedback, Model Development

Modify

Refinement and Correction

Problem Definition

Existing System : Early Warning Score (EWS)

- A scoring system based on multiple vital signs to quickly determine the level of diseases of the patient
- Low Recall / High False Alarm Rate

※ Recall : Probability of judging a dangerous case as dangerous False Alarm Rate : Probability of judging a non-dangerous case as dangerous (=False Positive Rate)

• Increased burden among medical staff

<Modified Early Warning Score (MEWS)>

<Kwon JM, Lee Y, Lee Y, Lee S, Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J Am Heart Assoc 2018;7>

Methods

Problem Redefinition

Statistical Analysis Coal Statement

1) Basic stats

2) Regression to identify the relationship among variables

3) Extracting meaningful features

1) Future risk detection 2) Weighted type 1 & 2 errors

Goal

3) High Recall / Low False Alarm Rate

Data Structure

- Data in the train set and the test set are patient data from different hospitals.
- Since the data per patient is relatively short, approximately 2 to 5 days, it is appropriate to analyze data in hours rather than days.

Methods

Exploratory Data Analysis (Chart)

cardiac arrest occurs

6 hours before cardiac arrest

• This is a case in which a 'significant increase in pulse to over 130' appears to be closely related to the occurrence of cardiac arrest.

Missing Values

- The main reasons for missing values are problems with EMR recording devices and differences in rounding methods on general wards.
- Body temperature, pulse, and respiration are often measured simultaneously, and oxygen saturation is often measured using a separate device.
- Rather than replacing or removing missing values, we want to convert them into dummy variables and utilize them.

Methods

Missing Value Conversion Example

← Before

↓ After

Regression

- The newly created variables show some valid values
- For example, pulse shows a significant relationship with the occurrence of cardiac arrest.

There is a trade-off in how many hours (h) we need to predict.

- Predictions for the near future \rightarrow Performance \uparrow , Practicality \downarrow
- Predictions for the distant future \rightarrow Practicality \uparrow , Performance \downarrow
- Therefore, it is necessary to set the goal of how many hours (h) later to predict risk.

• To predict the future after *h* hours, *m* previous data is needed. At this time, *m* is searched as a parameter.

Model Suggestion

• Two models are proposed depending on the purpose.

• We can expect long-term and short-term forecasting effects, respectively.

Input Method Example

Model Selection

- CNN
	- CNN was designed to accommodate data as a time series using 1D convolution.
- LSTM
	- LSTM is ideal for entering the patient's past eight consecutive data because it recognizes time series data well.
- DNN
	- DNN was included in the comparison as a basic deep-learning model, providing a benchmark for the other models' performance.
- LGBM
	- We constructed models using machine learning techniques and compared their performance.

Number of Cases

Predictive Model in 6 hours

Confusion Matrix of Predictive Model in 6 hours

- LSTM performs best among predictive models in 6 hours
- Type 2 error decrease : Type 1 error increase $23 : 4012 \doteq 1 : 174$ $6:4629 = 1:771$

Confusion Matrix of Predictive Model in 1 hour

- LGBM performs best among predictive models in 1 hour
- Type 2 error decrease : Type 1 error increase $28 : 4293 \doteq 1 : 153$ $15 : 4176 \div 1 : 278$

Comparison with Existing System

Predictive Model in 6 hours **Predictive Model in 1 hour**

Real-Time Risk Prediction Chart

Implication

Implication

- Limitation
	- Lack of data on risk group
	- Approach by grouping variables by measurement period
	- Explanatory power
- Implication

- Rather than viewing data as simple numbers and processing it mechanically, we learned the need for a statistical approach based on a sufficient understanding of the data.

Thank you

Reference

 ${\bf A}$
ZEN

An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest \bullet <Kwon JM, Lee Y, Lee Y, Lee S, Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J Am Heart Assoc 2018;7>

A deep learning model for real-time mortality prediction in critically ill children \bullet <Kim SY, Kim S, Cho J, et al. A deep learning model for real-time mortalityprediction in critically ill children. Crit Care. 2019;23:279>

Recurrent Neural Networks for Multivariate Time Series with Missing Values \bullet <Che, Z. et al. Recurrent neural networks for multivariate time series with missing values. Rep. 8, 1-12 (2018)>

Learning representations for the early detection of sepsis with deep neural \bullet networks

<Kam, H. J. & Kim, H. Y. Learning representations for the early detection of sepsis with deep neural networks. Computers in biology and medicine 89, 248-255 (2017)>

Distribution of Risk Group and Control Group by Train and Test Dataset

AI

Data Details

Vital Sign Distribution

Proportion of Missing Values

Missing Value Ratio by Variable

Missing Value Ratio with 1-hour equalization

Confusion Matrix of All Models (6 hour prediction)

Confusion Matrix of All Models (1 hour prediction)

